14/09/2020

Adversarial Learned Molecular Graph Inference and Generation

Sebastian Pölsterl, Christian Wachinger

Keywords:

Abstract: Recent methods for generating novel molecules use graph representations of molecules and employ various forms of graph convolutional neural networks for inference. However, training requires solving an expensive graph isomorphism problem, which previous approaches do not address or solve only approximately. In this work, we propose ALMGIG, a likelihood-free adversarial learning framework for inference and de novo molecule generation that avoids explicitly computing a reconstruction loss. Our approach extends generative adversarial networks by including an adversarial cycle-consistency loss to implicitly enforce the reconstruction property. To capture properties unique to molecules, such as valence, we extend the Graph Isomorphism Network to multi-graphs. To quantify the performance of models, we propose to compute the distance between distributions of physicochemical properties with the 1-Wasserstein distance. We demonstrate that ALMGIG more accurately learns the distribution over the space of molecules than all baselines. Moreover, it can be utilized for drug discovery by efficiently searching the space of molecules using molecules’ continuous latent representation. Our code is available at https://github.com/ai-med/almgig.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers