02/02/2021

Modular Graph Transformer Networks for Multi-Label Image Classification

Hoang D. Nguyen, Xuan-Son Vu, Duc-Trong Le

Keywords:

Abstract: With the recent advances in graph neural networks, there is a rising number of studies on graph-based multi-label classification with the consideration of object dependencies within visual data. Nevertheless, graph representations can become indistinguishable due to the complex nature of label relationships. We propose a multi-label image classification framework based on graph transformer networks to fully exploit inter-label interactions. The paper presents a modular learning scheme to enhance the classification performance by segregating the computational graph into multiple sub-graphs based on modularity. The proposed approach, named Modular Graph Transformer Networks (MGTN), is capable of employing multiple backbones for better information propagation over different sub-graphs guided by graph transformers and convolutions. We validate our framework on MS-COCO and Fashion550K datasets to demonstrate improvements for multi-label image classification. The source code is available at https://github.com/ReML-AI/MGTN.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949165
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers