22/11/2021

Spatiotemporal Deformable Scene Graphs for Complex Activity Detection

Salman Khan, Fabio Cuzzolin

Keywords: action detection, activity detection, complex activity detection, scene graph, graph convolutional network, autonomous driving, surgical robotics, deformable pooling, parts deformation

Abstract: Long-term complex activity recognition and localisation can be crucial for decision making in autonomous systems such as smart cars and surgical robots. Here we address the problem via a novel deformable, spatiotemporal scene graph approach, consisting of three main building blocks: (i) action tube detection, (ii) the modelling of the deformable geometry of parts, and (iii) a graph convolutional network. Firstly, action tubes are detected in a series of snippets. Next, a new 3D deformable RoI pooling layer is designed for learning the flexible, deformable geometry of the constituent action tubes. Finally, a scene graph is constructed by considering all parts as nodes and connecting them based on different semantics such as order of appearance, sharing the same action label and feature similarity. We also contribute fresh temporal complex activity annotation for the recently released ROAD autonomous driving and SARAS-ESAD surgical action datasets and show the adaptability of our framework to different domains. Our method is shown to significantly outperform graph-based competitors on both augmented datasets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers