02/02/2021

GO Hessian for Expectation-Based Objectives

Yulai Cong, Miaoyun Zhao, Jianqiao Li, Junya Chen, Lawrence Carin

Keywords:

Abstract: An unbiased low-variance gradient estimator, termed GO gradient, was proposed recently for expectation-based objectives E_q_γ(y) [f(y)], where the random variable (RV) y may be drawn from a stochastic computation graph (SCG) with continuous (non-reparameterizable) internal nodes and continuous/discrete leaves. Based on the GO gradient, we present for E_q_γ(y) [f(y)] an unbiased low-variance Hessian estimator, named GO Hessian, which contains the deterministic Hessian as a special case. Considering practical implementation, we reveal that the GO Hessian in expectation obeys the chain rule and is therefore easy-to-use with auto-differentiation and Hessian-vector products, enabling efficient cheap exploitation of curvature information over deep SCGs. As representative examples, we present the GO Hessian for non-reparameterizable gamma and negative binomial RVs/nodes. Leveraging the GO Hessian, we develop a new second-order method for E_q_γ(y) [f(y)], with challenging experiments conducted to verify its effectiveness and efficiency.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949221
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers