02/02/2021

Multi-modal Multi-label Emotion Recognition with Heterogeneous Hierarchical Message Passing

Dong Zhang, Xincheng Ju, Wei Zhang, Junhui Li, Shoushan Li, Qiaoming Zhu, Guodong Zhou

Keywords:

Abstract: As an important research issue in affective computing community, multi-modal emotion recognition has become a hot topic in the last few years. However, almost all existing studies perform multiple binary classification for each emotion with focus on complete time series data. In this paper, we focus on multi-modal emotion recognition in a multi-label scenario. In this scenario, we consider not only the label-to-label dependency, but also the feature-to-label and modality-to-label dependencies. Particularly, we propose a heterogeneous hierarchical message passing network to effectively model above dependencies. Furthermore, we propose a new multi-modal multi-label emotion dataset based on partial time-series content to show predominant generalization of our model. Detailed evaluation demonstrates the effectiveness of our approach.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948154
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers