19/08/2021

State-Based Recurrent SPMNs for Decision-Theoretic Planning under Partial Observability

Layton Hayes, Prashant Doshi, Swaraj Pawar, Hari Teja Tatavarti

Keywords: Machine Learning, Learning Graphical Models, Model-Based Reasoning, Planning under Uncertainty

Abstract: The sum-product network (SPN) has been extended to model sequence data with the recurrent SPN (RSPN), and to decision-making problems with sum-product-max networks (SPMN). In this paper, we build on the concepts introduced by these extensions and present state-based recurrent SPMNs (S-RSPMNs) as a generalization of SPMNs to sequential decision-making problems where the state may not be perfectly observed. As with recurrent SPNs, S-RSPMNs utilize a repeatable template network to model sequences of arbitrary lengths. We present an algorithm for learning compact template structures by identifying unique belief states and the transitions between them through a state matching process that utilizes augmented data. In our knowledge, this is the first data-driven approach that learns graphical models for planning under partial observability, which can be solved efficiently. S-RSPMNs retain the linear solution complexity of SPMNs, and we demonstrate significant improvements in compactness of representation and the run time of structure learning and inference in sequential domains.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers