13/04/2021

Uniform consistency of cross-validation estimators for high-dimensional ridge regression

Pratik Patil, Yuting Wei, Alessandro Rinaldo, Ryan Tibshirani

Keywords:

Abstract: We examine generalized and leave-one-out cross-validation for ridge regression in a proportional asymptotic framework where the dimension of the feature space grows proportionally with the number of observations. Given i.i.d. samples from a linear model with an arbitrary feature covariance and a signal vector that is bounded in \ell_2 norm, we show that generalized cross-validation for ridge regression converges almost surely to the expected out-of-sample prediction error, uniformly over a range of ridge regularization parameters that includes zero (and even negative values). We prove the analogous result for leave-one-out cross-validation. As a consequence, we show that ridge tuning via minimization of generalized or leave-one-out cross-validation asymptotically almost surely delivers the optimal level of regularization for predictive accuracy, whether it be positive, negative, or zero.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers