08/12/2020

Multilingual Emoticon Prediction of Tweets about COVID-19

Stefanos Stoikos, Mike Izbicki

Keywords:

Abstract: Emojis are a widely used tool for encoding emotional content in informal messages such as tweets,and predicting which emoji corresponds to a piece of text can be used as a proxy for measuring the emotional content in the text. This paper presents the first model for predicting emojis in highly multilingual text.Our BERTmoticon model is a fine-tuned version of the BERT model,and it can predict emojis for text written in 102 different languages.We trained our BERTmoticon model on 54.2 million geolocated tweets sent in the first 6 months of 2020,and we apply the model to a case study analyzing the emotional reaction of Twitter users to news about the coronavirus. Example findings include a spike in sadness when the World Health Organization (WHO) declared that coronavirus was a global pandemic, and a spike in anger and disgust when the number of COVID-19 related deaths in the United States surpassed one hundred thousand. We provide an easy-to-use and open source python library for predicting emojis with BERTmoticon so that the model can easily be applied to other data mining tasks.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6570-multilingual-emoticon-prediction-of-tweets-about-covid-19
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING Workshops 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers