08/07/2020

The Power of Many Samples in Query Complexity

Andrew Bassilakis, Andrew Drucker, Mika Göös, Lunjia Hu, Weiyun Ma, Li-Yang Tan

Keywords: Query complexity, Composition theorems

Abstract: The randomized query complexity 𝖱(f) of a boolean function f: {0,1}ⁿ → {0,1} is famously characterized (via Yao’s minimax) by the least number of queries needed to distinguish a distribution 𝒟₀ over 0-inputs from a distribution 𝒟₁ over 1-inputs, maximized over all pairs (𝒟₀,𝒟₁). We ask: Does this task become easier if we allow query access to infinitely many samples from either 𝒟₀ or 𝒟₁? We show the answer is no: There exists a hard pair (𝒟₀,𝒟₁) such that distinguishing 𝒟₀^∞ from 𝒟₁^∞ requires Θ(𝖱(f)) many queries. As an application, we show that for any composed function f∘g we have 𝖱(f∘g) ≥ Ω(fbs(f)𝖱(g)) where fbs denotes fractional block sensitivity.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICALP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers