26/08/2020

Revisiting the Landscape of Matrix Factorization

Hossein Valavi, Sulin Liu, Peter Ramadge

Keywords:

Abstract: Prior work has shown that low-rank matrix factorization has infinitely many critical points, each of which is either a global minimum or a (strict) saddle point. We revisit this problem and provide simple, intuitive proofs of a set of extended results for low-rank and general-rank problems. We couple our investigation with a known invariant manifold M0 of gradient flow. This restriction admits a uniform negative upper bound on the least eigenvalue of the Hessian map at all strict saddles in M0. The bound depends on the size of the nonzero singular values and the separation between distinct singular values of the matrix to be factorized.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers