22/06/2020

XOR lemmas for resilient functions against polynomials

Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett, David Zuckerman

Keywords: Low-degree polynomials, Correlation bounds, Resilient functions, Pseudorandom Generators

Abstract: A major challenge in complexity theory is to explicitly construct functions that have small correlation with low-degree polynomials over F2. We introduce a new technique to prove such correlation bounds with F2 polynomials. Using this technique, we bound the correlation of an XOR of Majorities with constant degree polynomials. In fact, we prove a more general XOR lemma that extends to arbitrary resilient functions. We conjecture that the technique generalizes to higher degree polynomials as well. A key ingredient in our new approach is a structural result about the Fourier spectrum of low degree polynomials over F2. We show that for any n-variate polynomial p over F2 of degree at most d, there is a small set S ⊂ [n] of variables, such that almost all of the Fourier mass of p lies on Fourier coefficients that intersect with S. In fact our result is more general, and finds such a set S for any low-dimensional subspace of polynomials. This generality is crucial in deriving the new XOR lemmas.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers