19/10/2020

Magellan: A personalized travel recommendation system using transaction data

Konik Kothari, Dhruv Gelda, Wei Zhang, Hao Yang

Keywords: travel recommendation, recommender systems, quadtree decomposition, deep learning

Abstract: We present Magellan - a personalized travel recommendation system that is built entirely from card transaction data. The data logs contain extensive metadata for each transaction between a user and a merchant. We describe the procedure employed to extract travel itineraries from such transaction data. Unlike traditional approaches, we formulate the recommendation problem into two steps: (1) predict coarse granularity information such as location and category of the next merchant; and (2) provide fine granularity individual merchant recommendations based on the predicted location and category. The breakdown helps us build a scalable recommendation system. We propose a quadtree-based algorithm that provides an adaptive spatial resolution for the location classes in our first step while also reducing the class-imbalance across various location labels. Finally, we propose a novel neural architecture, SoLEmNet, that implicitly learns the inherent class label hierarchy and achieves a higher performance on our dataset compared to previous baselines.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412725#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers