15/06/2020

OPTIMUSCLOUD: Heterogeneous Configuration Optimization for Distributed Databases in the Cloud

Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Subrata Mitra, Ana Klimovic, Somali Chaterji, Saurabh Bagchi

Keywords:

Abstract: Achieving cost and performance efficiency for cloud-hosted databases requires exploring a large configuration space, including the parameters exposed by the database along with the variety of VM configurations available in the cloud. Even small deviations from an optimal configuration have significant consequences on performance and cost. Existing systems that automate cloud deployment configuration can select near-optimal instance types for homogeneous clusters of virtual machines and for stateless, recurrent data analytics workloads. We show that to find optimal performance-per-$ cloud deployments for NoSQL database applications, it is important to (1) consider heterogeneous cluster configurations, (2) jointly optimize database and VM configurations, and (3) dynamically adjust configuration as workload behavior changes. We present OPTIMUSCLOUD, an online reconfiguration system that can efficiently perform such joint and heterogeneous configuration for dynamic workloads. We evaluate our system with two clustered NoSQL systems: Cassandra and Redis, using three representative workloads and show that OPTIMUSCLOUD provides 40% higher throughput/$ and 4.5× lower 99-percentile latency on average compared to state-of-the-art prior systems, CherryPick, Selecta, and SOPHIA.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at USENIX ATC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers