11/08/2020

Flow event telemetry on programmable data plane

Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, Pengcheng Zhang, Dennis Cai, Ming Zhang, Mingwei Xu

Keywords: monitoring, programmable data plane, Flow event telemetry

Abstract: Network performance anomalies (NPAs), e.g. long-tailed latency, bandwidth decline, etc., are increasingly crucial to cloud providers as applications are getting more sensitive to performance. The fundamental difficulty to quickly mitigate NPAs lies in the limitations of state-of-the-art network monitoring solutions — coarse-grained counters, active probing, or packet telemetry either cannot provide enough insights on flows or incur too much overhead. This paper presents NetSeer, a flow event telemetry (FET) monitor which aims to discover and record all performance-critical data plane events, e.g. packet drops, congestion, path change, and packet pause. NetSeer is efficiently realized on the programmable data plane. It has a high coverage on flow events including inter-switch packet drop/corruption which is critical but also challenging to retrieve the original flow information, with novel intra- and inter-switch event detection algorithms running on data plane; NetSeer also achieves high scalability and accuracy with innovative designs of event aggregation, information compression, and message batching that mainly run on data plane, using switch CPU as complement. NetSeer has been implemented on commodity programmable switches and NICs. With real case studies and extensive experiments, we show NetSeer can reduce NPA mitigation time by 61

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGCOMM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers