13/07/2020

Towards GPU Utilization Prediction for Cloud Deep Learning

Gingfung Yeung, Damian Borowiec, Adrian Friday, Richard Harper, Peter Garraghan

Keywords:

Abstract: Understanding the GPU utilization of Deep Learning (DL) workloads is important for enhancing resource-efficiency and cost-benefit decision making for DL frameworks in the cloud. Current approaches to determine DL workload GPU utilization rely on online profiling within isolated GPU devices, and must be performed for every unique DL workload submission resulting in resource under-utilization and reduced service availability. In this paper, we propose a prediction engine to proactively determine the GPU utilization of heterogeneous DL workloads without the need for in-depth or isolated online profiling. We demonstrate that it is possible to predict DL workload GPU utilization via extracting information from its model computation graph. Our experiments show that the prediction engine achieves an RMSLE of 0.154, and can be exploited by DL schedulers to achieve up to 61.5% improvement to GPU cluster utilization.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at HotCloud 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers