15/06/2020

Fine-Grained Isolation for Scalable, Dynamic, Multi-tenant Edge Clouds

Yuxin Ren, Guyue Liu, Vlad Nitu, Wenyuan Shao, Riley Kennedy, Gabriel Parmer, Timothy Wood, Alain Tchana

Keywords:

Abstract: 5G edge clouds promise a pervasive computational infrastructure a short network hop away, enabling a new breed of smart devices that respond in real-time to their physical surroundings. Unfortunately, today’s operating system designs fail to meet the goals of scalable isolation, dense multi-tenancy, and high performance needed for such applications. In this paper we introduce EdgeOS that emphasizes system-wide isolation as fine-grained as per-client. We propose a novel memory movement accelerator architecture that employs data copying to enforce strong isolation without performance penalties. To support scalable isolation, we introduce a new protection domain implementation that offers lightweight isolation, fast startup and low latency even under high churn. We implement EdgeOS in a microkernel based OS and demonstrate running high scale network middleboxes using the Click software router and endpoint applications such as memcached, a TLS proxy, and neural network inference. We reduce startup latency by 170X compared to Linux processes, and improve latency by three orders of magnitude when running 300 to 1000 edge-cloud memcached instances on one server.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at USENIX ATC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers