19/10/2020

EdgeRec: Recommender system on edge in mobile taobao

Yu Gong, Ziwen Jiang, Yufei Feng, Binbin Hu, Kaiqi Zhao, Qingwen Liu, Wenwu Ou

Keywords: edge computing, recommender system

Abstract: Recommender system (RS) has become a crucial module in most web-scale applications. Recently, most RSs are in the waterfall form based on the cloud-to-edge framework, where recommended results are transmitted to edge (e.g., user mobile) by computing in advance in the cloud server. Despite effectiveness, network bandwidth and latency between cloud server and edge may cause the delay for system feedback and user perception. Hence, real-time computing on edge could help capture user preferences more preciously and thus make more satisfactory recommendations. Our work, to our best knowledge, is the first attempt to design and implement the novel Recommender System on Edge (EdgeRec), which achieves Real-time User Perception and Real-time System Feedback. Moreover, we propose Heterogeneous User Behavior Sequence Modeling and Context-aware Reranking with Behavior Attention Networks to capture user’s diverse interests and adjust recommendation results accordingly. Experimental results on both the offline evaluation and online performance in Taobao home-page feeds demonstrate the effectiveness of EdgeRec.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412700#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers