14/06/2020

Tangent Images for Mitigating Spherical Distortion

Marc Eder, Mykhailo Shvets, John Lim, Jan-Michael Frahm

Keywords: spherical images, convolutional neural networks, distortion, 360 images, omnidirectional imaging, image representations, high resolution

Abstract: In this work, we propose "tangent images," a spherical image representation that facilitates transferable and scalable 360 degree computer vision. Inspired by techniques in cartography and computer graphics, we render a spherical image to a set of distortion-mitigated, locally-planar image grids tangent to a subdivided icosahedron. By varying the resolution of these grids independently of the subdivision level, we can effectively represent high resolution spherical images while still benefiting from the low-distortion icosahedral spherical approximation. We show that training standard convolutional neural networks on tangent images compares favorably to the many specialized spherical convolutional kernels that have been developed, while also scaling efficiently to handle significantly higher spherical resolutions. Furthermore, because our approach does not require specialized kernels, we show that we can transfer networks trained on perspective images to spherical data without fine-tuning and with limited performance drop-off. Finally, we demonstrate that tangent images can be used to improve the quality of sparse feature detection on spherical images, illustrating its usefulness for traditional computer vision tasks like structure-from-motion and SLAM.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers