14/06/2020

Tracking by Instance Detection: A Meta-Learning Approach

Guangting Wang, Chong Luo, Xiaoyan Sun, Zhiwei Xiong, Wenjun Zeng

Keywords: object tracking, deep learning, object detection

Abstract: We consider the tracking problem as a special type of object detection problem, which we call instance detection. With proper initialization, a detector can be quickly converted into a tracker by learning the new instance from a single image. We find that model-agnostic meta-learning (MAML) offers a strategy to initialize the detector that satisfies our needs. We propose a principled three-step approach to build a high-performance tracker. First, pick any modern object detector trained with gradient descent. Second, conduct offline training (or initialization) with MAML. Third, perform domain adaptation using the initial frame. We follow this procedure to build two trackers, named Retina-MAML and FCOS-MAML, based on two modern detectors RetinaNet and FCOS. Evaluations on four benchmarks show that both trackers are competitive against state-of-the-art trackers. On OTB-100, Retina-MAML achieves the highest ever AUC of 0.712. On TrackingNet, FCOS-MAML ranks the first on the leader board with an AUC of 0.757 and the normalized precision of 0.822. Both trackers run in real-time at 40 FPS.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers