07/09/2020

E2ETag: An End-to-End Trainable Method for Generating and Detecting Fiducial Markers

John Peace, Eric Psota, Yanfeng Liu, Lance Pérez

Keywords: E2ETag, Fiducial Marker, Pose Estimation, Superimposition, Simulation, Augmentation

Abstract: Existing fiducial markers solutions are designed for efficient detection and decoding, however, their ability to stand out in natural environments is difficult to infer from relatively limited analysis. Furthermore, worsening performance in challenging image capture scenarios - such as poor exposure, motion blur, and off-axis viewing - sheds light on their limitations. E2ETag introduces an end-to-end trainable method for designing fiducial markers and a complimentary detector. By introducing back-propagatable marker augmentation and superimposition into training, the method learns to generate markers that can be detected and classified in challenging real-world environments using a fully convolutional detector network. Results demonstrate that E2ETag outperforms existing methods in ideal conditions and performs much better in the presence of motion blur, contrast fluctuations, noise, and off-axis viewing angles.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers