14/06/2020

Robust 3D Self-Portraits in Seconds

Zhe Li, Tao Yu, Chuanyu Pan, Zerong Zheng, Yebin Liu

Keywords: 3d human reconstruction, single rgbd camera, general clothing reconstruction, 3d scanning, volumetric fusion, bundle adjustment

Abstract: In this paper, we propose an efficient method for robust 3D self-portraits using a single RGBD camera. Benefiting from the proposed PIFusion and lightweight bundle adjustment algorithm, our method can generate detailed 3D self-portraits in seconds and shows the ability to handle subjects wearing extremely loose clothes. To achieve highly efficient and robust reconstruction, we propose PIFusion, which combines learning-based 3D recovery with volumetric non-rigid fusion to generate accurate sparse partial scans of the subject. Moreover, a non-rigid volumetric deformation method is proposed to continuously refine the learned shape prior. Finally, a lightweight bundle adjustment algorithm is proposed to guarantee that all the partial scans can not only ``loop'' with each other but also remain consistent with the selected live key observations. The results and experiments show that the proposed method achieves more robust and efficient 3D self-portraits compared with state-of-the-art methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers