26/04/2020

RGBD-GAN: Unsupervised 3D Representation Learning From Natural Image Datasets via RGBD Image Synthesis

Atsuhiro Noguchi, Tatsuya Harada

Keywords: image generation, 3D vision, unsupervised representation learning

Abstract: Understanding three-dimensional (3D) geometries from two-dimensional (2D) images without any labeled information is promising for understanding the real world without incurring annotation cost. We herein propose a novel generative model, RGBD-GAN, which achieves unsupervised 3D representation learning from 2D images. The proposed method enables camera parameter--conditional image generation and depth image generation without any 3D annotations, such as camera poses or depth. We use an explicit 3D consistency loss for two RGBD images generated from different camera parameters, in addition to the ordinal GAN objective. The loss is simple yet effective for any type of image generator such as DCGAN and StyleGAN to be conditioned on camera parameters. Through experiments, we demonstrated that the proposed method could learn 3D representations from 2D images with various generator architectures.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers