14/06/2020

SDFDiff: Differentiable Rendering of Signed Distance Fields for 3D Shape Optimization

Yue Jiang, Dantong Ji, Zhizhong Han, Matthias Zwicker

Keywords: differentiable rendering, signed distance field, image-based 3d reconstruction, 3d shape optimization, deep learning, inverse graphics

Abstract: We propose SDFDiff, a novel approach for image-based shape optimization using differentiable rendering of 3D shapes represented by signed distance functions (SDFs). Compared to other representations, SDFs have the advantage that they can represent shapes with arbitrary topology, and that they guarantee watertight surfaces. We apply our approach to the problem of multi-view 3D reconstruction, where we achieve high reconstruction quality and can capture complex topology of 3D objects. In addition, we employ a multi-resolution strategy to obtain a robust optimization algorithm. We further demonstrate that our SDF-based differentiable renderer can be integrated with deep learning models, which opens up options for learning approaches on 3D objects without 3D supervision. In particular, we apply our method to single-view 3D reconstruction and achieve state-of-the-art results.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers