05/01/2021

Viewpoint-Agnostic Image Rendering

Hiroaki Aizawa, Hirokatsu Kataoka, Yutaka Satoh, Kunihito Kato

Keywords:

Abstract: Rendering an any-viewpoint image is extremely difficult for Generative Adversarial Networks. This is because conventional GANs do not understand 3D information underlying a given viewpoint image such as an object shape and relationship between viewpoint and objects in 3D space. In this paper, we present how to perform a Viewpoint-Agnostic Image Rendering (VAIR), equipping a conditional GAN with a mechanism to reconstruct 3D information of the input view. VAIR realizes any-viewpoint image generation by manipulating a viewpoint in 3D space where the reconstructed instance shape is arranged. In addition, we convert the reconstructed 3D shape into a 2D representation for image-based conditional GAN, while preserving detail 3D information. The representation consists of a depth image and 2D semantic keypoint images, which are obtained by rendering the shape from a viewpoint. In the experiment, we evaluate using a CUB-200-2011 dataset, which contains few-samples biased a viewpoint such that covers only part of the target appearance. As a result, our VAIR clearly renders an any-viewpoint image.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers