14/06/2020

State-Aware Tracker for Real-Time Video Object Segmentation

Xi Chen, Zuoxin Li, Ye Yuan, Gang Yu, Jianxin Shen, Donglian Qi

Keywords: video object segmentation, semi-supervised, real-time, state ware, state estimation, feedback

Abstract: In this work, we address the task of semi-supervised video object segmentation (VOS) and explore how to make efficient use of video property to tackle the challenge of semi-supervision. We propose a novel pipeline called State-Aware Tracker (SAT), which can produce accurate segmentation results with real-time speed. For higher efficiency, SAT takes advantage of the inter-frame consistency and deals with each target object as a tracklet. For more stable and robust performance over video sequences, SAT gets awareness for each state and makes self-adaptation via two feedback loops. One loop assists SAT in generating more stable tracklets. The other loop helps to construct a more robust and holistic target representation. SAT achieves a promising result of 72.3% J&F mean with 39 FPS on DAVIS 2017-Val dataset, which shows a decent trade-off between efficiency and accuracy.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers