07/09/2020

Adversarial Concurrent Training: Optimizing Robustness and Accuracy Trade-off of Deep Neural Networks

Elahe Arani, Fahad Sarfraz, Bahram Zonooz

Keywords: Adversarial Robustness, Generalization, Adversarial Training, Deep Learning, Collaborative Learning

Abstract: Adversarial training has been proven to be an effective technique for improving the adversarial robustness of models. However, there seems to be an inherent trade-off be-tween optimizing the model for accuracy and robustness. To this end, we propose Adversarial Concurrent Training (ACT), which employs adversarial training in a collaborative learning framework whereby we train a robust model in conjunction with a natural model in a minimax game. ACT encourages the two models to align their feature space by using the task-specific decision boundaries and explore the input space more broadly. Furthermore, the natural model acts as a regularizer, enforcing priors on features that the robust model should learn. Our analyses on the behavior of the models show that ACT leads to a robust model with lower model complexity, higher information compression in the learned representations, and high posterior entropy solutions indicative of convergence to a flatter minima. We demonstrate the effectiveness of the proposed approach across different datasets and network architectures. On ImageNet, ACT achieves 68.20% standard accuracy and 44.29% robustness accuracy under a 100-iteration untargeted attack, improving upon the standard adversarial training method’s 65.70% standard accuracy and 42.36% robustness.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers