14/06/2020

Learning Video Stabilization Using Optical Flow

Jiyang Yu, Ravi Ramamoorthi

Keywords: video stabilization, optical flow, deep learning, video processing, computational photography

Abstract: We propose a novel neural network that infers the per-pixel warp fields for video stabilization from the optical flow fields of the input video. While previous learning based video stabilization methods attempt to implicitly learn frame motions from color videos, our method resorts to optical flow for motion analysis and directly learns the stabilization using the optical flow. We also propose a pipeline that uses optical flow principal components for motion inpainting and warp field smoothing, making our method robust to moving objects, occlusion and optical flow inaccuracy, which is challenging for other video stabilization methods. Our method achieves quantitatively and visually better results than the state-of-the-art optimization based and deep learning based video stabilization methods. Our method also gives a ~3x speed improvement compared to the optimization based methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers