30/11/2020

Lossless Image Compression Using a Multi-Scale Progressive Statistical Model

Honglei Zhang, Francesco Cricri, Hamed R. Tavakoli, Nannan Zou, Emre Aksu, Miska M. Hannuksela

Keywords:

Abstract: Lossless image compression is an important technique for im-age storage and transmission when information loss is not allowed. Withthe fast development of deep learning techniques, deep neural networkshave been used in this field to achieve a higher compression rate. Meth-ods based on pixel-wise autoregressive statistical models have showngood performance. However, the sequential processing way prevents thesemethods to be used in practice. Recently, multi-scale autoregressive mod-els have been proposed to address this limitation. Multi-scale approachescan use parallel computing systems efficiently and build practical sys-tems. Nevertheless, these approaches sacrifice compression performancein exchange for speed. In this paper, we propose a multi-scale progressivestatistical model that takes advantage of the pixel-wise approach and themulti-scale approach. We developed a flexible mechanism where the pro-cessing order of the pixels can be adjusted easily. Our proposed methodoutperforms the state-of-the-art lossless image compression methods ontwo large benchmark datasets by a significant margin without degradingthe inference speed dramatically.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_705.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers