14/06/2020

Learning by Analogy: Reliable Supervision From Transformations for Unsupervised Optical Flow Estimation

Liang Liu, Jiangning Zhang, Ruifei He, Yong Liu, Yabiao Wang, Ying Tai, Donghao Luo, Chengjie Wang, Jilin Li, Feiyue Huang

Keywords: optical flow, self-supervised learning, unsupervised learning

Abstract: Unsupervised learning of optical flow, which leverages the supervision from view synthesis, has emerged as a promising alternative to supervised methods. However, the objective of unsupervised learning is likely to be unreliable in challenging scenes. In this work, we present a framework to use more reliable supervision from transformations. It simply twists the general unsupervised learning pipeline by running another forward pass with transformed data from augmentation, along with using transformed predictions of original data as the self-supervision signal. Besides, we further introduce a lightweight network with multiple frames by a highly-shared flow decoder. Our method consistently gets a leap of performance on several benchmarks with the best accuracy among deep unsupervised methods. Also, our method achieves competitive results to recent fully supervised methods while with much fewer parameters.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers