06/12/2020

Convolutional Tensor-Train LSTM for Spatio-Temporal Learning

Jiahao Su, Wonmin Byeon, Jean Kossaifi, Furong Huang, Jan Kautz, Anima Anandkumar

Keywords:

Abstract: Learning from spatio-temporal data has numerous applications such as human-behavior analysis, object tracking, video compression, and physics simulation. However, existing methods still perform poorly on challenging video tasks such as long-term forecasting. This is because these kinds of challenging tasks require learning long-term spatio-temporal correlations in the video sequence. In this paper, we propose a higher-order convolutional LSTM model that can efficiently learn these correlations, along with a succinct representations of the history. This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time. To make this feasible in terms of computation and memory requirements, we propose a novel convolutional tensor-train decomposition of the higher-order model. This decomposition reduces the model complexity by jointly approximating a sequence of convolutional kernels as a low-rank tensor-train factorization. As a result, our model outperforms existing approaches, but uses only a fraction of parameters, including the baseline models. Our results achieve state-of-the-art performance in a wide range of applications and datasets, including the multi-steps video prediction on the Moving-MNIST-2 and KTH action datasets as well as early activity recognition on the Something-Something V2 dataset.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers