22/06/2020

Combinatorial list-decoding of reed-solomon codes beyond the johnson radius

Chong Shangguan, Itzhak Tamo

Keywords: generalized Singleton bound, list-decoding, Johnson radius, Reed-Solomon codes

Abstract: List-decoding of Reed-Solomon (RS) codes beyond the so called Johnson radius has been one of the main open questions in coding theory and theoretical computer science since the work of Guruswami and Sudan. It is now known by the work of Rudra and Wootters, using techniques from high dimensional probability, that over large enough alphabets there exist RS codes that are indeed list-decodable beyond this radius. In this paper we take a more combinatorial approach that allows us to determine the precise relation (up to the exact constant) between the decoding radius and the list size. We prove a generalized Singleton bound for a given list size, and conjecture that the bound is tight for most RS codes over large enough finite fields. We also show that the conjecture holds true for list sizes 2 and 3, and as a by product show that most RS codes with a rate of at least 1/9 are list-decodable beyond the Johnson radius. Lastly, we give the first explicit construction of such RS codes. The main tools used in the proof are a new type of linear dependency between codewords of a code that are contained in a small Hamming ball, and the notion of cycle space from Graph Theory. Both of them have not been used before in the context of list-decoding.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers