22/06/2020

Three-in-a-tree in near linear time

Kai-Yuan Lai, Hsueh-I Lu, Mikkel Thorup

Keywords: Induced subgraph detection, perfect graph, even hole, dynamic graph algorithm, SPQR-tree, top tree, odd hole, graph recognition

Abstract: The three-in-a-tree problem is to determine if a simple undirected graph contains an induced subgraph which is a tree connecting three given vertices. Based on a beautiful characterization that is proved in more than twenty pages, Chudnovsky and Seymour [Combinatorica 2010] gave the previously only known polynomial-time algorithm, running in O(mn2) time, to solve the three-in-a-tree problem on an n-vertex m-edge graph. Their three-in-a-tree algorithm has become a critical subroutine in several state-of-the-art graph recognition and detection algorithms. In this paper we solve the three-in-a-tree problem in O(mlog2 n) time, leading to improved algorithms for recognizing perfect graphs and detecting thetas, pyramids, beetles, and odd and even holes. Our result is based on a new and more constructive characterization than that of Chudnovsky and Seymour. Our new characterization is stronger than the original, and our proof implies a new simpler proof for the original characterization. The improved characterization gains the first factor n in speed. The remaining improvement is based on dynamic graph algorithms.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 12:14