06/12/2020

Variational Policy Gradient Method for Reinforcement Learning with General Utilities

Junyu Zhang, Alec Koppel, Amrit Bedi, Csaba Szepesvari, Mengdi Wang

Keywords:

Abstract: In recent years, reinforcement learning systems with general goals beyond a cumulative sum of rewards have gained traction, such as in constrained problems, exploration, and acting upon prior experiences. In this paper, we consider policy optimization in Markov Decision Problems, where the objective is a general utility function of the state-action occupancy measure, which subsumes several of the aforementioned examples as special cases. Such generality invalidates the Bellman equation. As this means that dynamic programming no longer works, we focus on direct policy search. Analogously to the Policy Gradient Theorem \cite{sutton2000policy} available for RL with cumulative rewards, we derive a new Variational Policy Gradient Theorem for RL with general utilities, which establishes that the gradient may be obtained as the solution of a stochastic saddle point problem involving the Fenchel dual of the utility function. We develop a variational Monte Carlo gradient estimation algorithm to compute the policy gradient based on sample paths. Further, we prove that the variational policy gradient scheme converges globally to the optimal policy for the general objective, and we also establish its rate of convergence that matches or improves the convergence rate available in the case of RL with cumulative rewards.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers