26/08/2020

Asymptotically Efficient Off-Policy Evaluation for Tabular Reinforcement Learning

Ming Yin, Yu-Xiang Wang

Keywords:

Abstract: We consider the problem of off-policy evaluation for reinforcement learning, where the goal is to estimate the expected reward of a target policy $\pi$ using offline data collected by running a logging policy $\mu$. Standard importance-sampling based approaches for this problem suffer from a variance that scales exponentially with time horizon $H$, which motivates a splurge of recent interest in alternatives that break the 'Curse of Horizon' (Liu et al. 2018, Xie et al. 2019). In particular, it was shown that a marginalized importance sampling (MIS) approach can be used to achieve an estimation error of order $O(H^3/ n)$ in mean square error (MSE) under an episodic Markov Decision Process model with finite states and potentially infinite actions. The MSE bound however is still a factor of $H$ away from a Cramer-Rao lower bound of order $\Omega(H^2/n)$. In this paper, we prove that with a simple modification to the MIS estimator, we can asymptotically attain the Cramer-Rao lower bound, provided that the action space is finite. We also provide a general method for constructing MIS estimators with high-probability error bounds.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers