26/04/2020

Ranking Policy Gradient

Kaixiang Lin, Jiayu Zhou

Keywords: Sample-efficient reinforcement learning, off-policy learning.

Abstract: Sample inefficiency is a long-lasting problem in reinforcement learning (RL). The state-of-the-art estimates the optimal action values while it usually involves an extensive search over the state-action space and unstable optimization. Towards the sample-efficient RL, we propose ranking policy gradient (RPG), a policy gradient method that learns the optimal rank of a set of discrete actions. To accelerate the learning of policy gradient methods, we establish the equivalence between maximizing the lower bound of return and imitating a near-optimal policy without accessing any oracles. These results lead to a general off-policy learning framework, which preserves the optimality, reduces variance, and improves the sample-efficiency. We conduct extensive experiments showing that when consolidating with the off-policy learning framework, RPG substantially reduces the sample complexity, comparing to the state-of-the-art.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers