26/08/2020

Variance Reduction for Evolution Strategies via Structured Control Variates

Yunhao Tang, Krzysztof Choromanski, Alp Kucukelbir

Keywords:

Abstract: Evolution Strategies (ES) are a powerful class of blackbox optimization techniques that recently became a competitive alternative to state-of-the-art policy gradient (PG) algorithms for reinforcement learning (RL). We propose a new method for improving accuracy of the ES algorithms, that as opposed to recent approaches utilizing only Monte Carlo structure of the gradient estimator, takes advantage of the underlying MDP structure to reduce the variance. We observe that the gradient estimator of the ES objective can be alternatively computed using reparametrization and PG estimators, which leads to new control variate techniques for gradient estimation in ES optimization. We provide theoretical insights and show through extensive experiments that this RL-specific variance reduction approach outperforms general purpose variance reduction methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 2:28