06/12/2020

ShiftAddNet: A Hardware-Inspired Deep Network

Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao Liu, Zhangyang Wang, Yingyan Lin

Keywords:

Abstract: Multiplication (e.g., convolution) is arguably a cornerstone of modern deep neural networks (DNNs). However, intensive multiplications cause expensive resource costs that challenge DNNs' deployment on resource-constrained edge devices, driving several attempts for multiplication-less deep networks. This paper presented ShiftAddNet, whose main inspiration is drawn from a common practice in energy-efficient hardware implementation, that is, multiplication can be instead performed with additions and logical bit-shifts. We leverage this idea to explicitly parameterize deep networks in this way, yielding a new type of deep network that involves only bit-shift and additive weight layers. This hardware-inspired ShiftAddNet immediately leads to both energy-efficient inference and training, without compromising the expressive capacity compared to standard DNNs. The two complementary operation types (bit-shift and add) additionally enable finer-grained control of the model's learning capacity, leading to more flexible trade-off between accuracy and (training) efficiency, as well as improved robustness to quantization and pruning. We conduct extensive experiments and ablation studies, all backed up by our FPGA-based ShiftAddNet implementation and energy measurements. Compared to existing DNNs or other multiplication-less models, ShiftAddNet aggressively reduces over 80% hardware-quantified energy cost of DNNs training and inference, while offering comparable or better accuracies. Codes and pre-trained models are available at https://github.com/RICE-EIC/ShiftAddNet.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers