26/04/2020

Shifted and Squeezed 8-bit Floating Point format for Low-Precision Training of Deep Neural Networks

Leopold Cambier, Anahita Bhiwandiwalla, Ting Gong, Oguz H. Elibol, Mehran Nekuii, Hanlin Tang

Keywords: Low-precision training, numerics, deep learning

Abstract: Training with larger number of parameters while keeping fast iterations is an increasingly adopted strategy and trend for developing better performing Deep Neural Network (DNN) models. This necessitates increased memory footprint and computational requirements for training. Here we introduce a novel methodology for training deep neural networks using 8-bit floating point (FP8) numbers. Reduced bit precision allows for a larger effective memory and increased computational speed. We name this method Shifted and Squeezed FP8 (S2FP8). We show that, unlike previous 8-bit precision training methods, the proposed method works out of the box for representative models: ResNet50, Transformer and NCF. The method can maintain model accuracy without requiring fine-tuning loss scaling parameters or keeping certain layers in single precision. We introduce two learnable statistics of the DNN tensors - shifted and squeezed factors that are used to optimally adjust the range of the tensors in 8-bits, thus minimizing the loss in information due to quantization.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers