06/12/2020

Fourier Spectrum Discrepancies in Deep Network Generated Images

Tarik Dzanic, Karan Shah, Freddie Witherden

Keywords:

Abstract: Advancements in deep generative models such as generative adversarial networks and variational autoencoders have resulted in the ability to generate realistic images that are visually indistinguishable from real images which raises concerns about their potential malicious usage. In this paper, we present an analysis of the high-frequency Fourier modes of real and deep network generated images and show that deep network generated images share an observable, systematic shortcoming in replicating the attributes of these high-frequency modes. Using this, we propose a novel detection method based on the frequency spectrum of the images which is able to achieve an accuracy of up to 99.2% in classifying real and deep network generated images from various GAN and VAE architectures on a dataset of 5000 images with as few as 8 training examples. Furthermore, we show the impact of image transformations such as compression, cropping, and resolution reduction on the classification accuracy and suggest a method for modifying the high-frequency attributes of deep network generated images to mimic real images.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers