14/09/2020

FAWA: Fast Adversarial Watermark Attack on Optical Character Recognition (OCR) Systems

Lu Chen, Jiao Sun, Wei Xu

Keywords: watermark, ocr model, targeted white-box attack

Abstract: Deep neural networks (DNNs) significantly improved the accuracy of optical character recognition (OCR) and inspired many important applications. Unfortunately, OCRs also inherit the vulnerability of DNNs under adversarial examples. Different from colorful vanilla images, text images usually have clear backgrounds. Adversarial examples generated by most existing adversarial attacks are unnatural and pollute the background severely. To address this issue, we propose the F ast Adversarial Watermark Attack (FAWA) against sequence-based OCR models in the white-box manner. By disguising the perturbations as watermarks, we can make the resulting adversarial images appear natural to human eyes and achieve a perfect attack success rate. FAWA works with either gradient-based or optimization-based perturbation generation. In both letter-level and word-level attacks, our experiments show that in addition to natural appearance, FAWA achieves a 100% attack success rate with 60% less perturbations and 78% fewer iterations on average. In addition, we further extend FAWA to support full-color watermarks, other languages, and even the OCR accuracy-enhancing mechanism.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers