16/11/2020

Probably Approximately Correct Vision-Based Planning using Motion Primitives

Sushant Veer, Anirudha Majumdar

Keywords:

Abstract: This paper presents an approach for learning vision-based planners that provably generalize to novel environments (i.e., environments unseen during training). We leverage the Probably Approximately Correct (PAC)-Bayes framework to obtain an upper bound on the expected cost of policies across all environments. Minimizing the PAC-Bayes upper bound thus trains policies that are accompanied by a certificate of performance on novel environments. The training pipeline we propose provides strong generalization guarantees for deep neural network policies by (a) obtaining a good prior distribution on the space of policies using Evolutionary Strategies (ES) followed by (b) formulating the PAC-Bayes optimization as an efficiently-solvable parametric convex optimization problem. We demonstrate the efficacy of our approach for producing strong generalization guarantees for learned vision-based motion planners through two simulated examples: (1) an Unmanned Aerial Vehicle (UAV) navigating obstacle fields with an onboard vision sensor, and (2) a dynamic quadrupedal robot traversing rough terrains with proprioceptive and exteroceptive sensors.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CoRL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers