18/07/2021

Data-efficient Hindsight Off-policy Option Learning

Markus Wulfmeier, Dushyant Rao, Roland Hafner, Thomas Lampe, Abbas Abdolmaleki, Tim Hertweck, Michael Neunert, Dhruva Tirumala Bukkapatnam, Noah Siegel, Nicolas Heess, Martin Riedmiller

Keywords: Reinforcement Learning and Planning, Deep RL

Abstract: We introduce Hindsight Off-policy Options (HO2), a data-efficient option learning algorithm. Given any trajectory, HO2 infers likely option choices and backpropagates through the dynamic programming inference procedure to robustly train all policy components off-policy and end-to-end. The approach outperforms existing option learning methods on common benchmarks. To better understand the option framework and disentangle benefits from both temporal and action abstraction, we evaluate ablations with flat policies and mixture policies with comparable optimization. The results highlight the importance of both types of abstraction as well as off-policy training and trust-region constraints, particularly in challenging, simulated 3D robot manipulation tasks from raw pixel inputs. Finally, we intuitively adapt the inference step to investigate the effect of increased temporal abstraction on training with pre-trained options and from scratch.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers