19/08/2021

Deep Reinforcement Learning for Multi-contact Motion Planning of Hexapod Robots

Huiqiao Fu, Kaiqiang Tang, Peng Li, Wenqi Zhang, Xinpeng Wang, Guizhou Deng, Tao Wang, Chunlin Chen

Keywords: Machine Learning, Deep Reinforcement Learning, Learning in Robotics, Motion and Path Planning

Abstract: Legged locomotion in a complex environment requires careful planning of the footholds of legged robots. In this paper, a novel Deep Reinforcement Learning (DRL) method is proposed to implement multi-contact motion planning for hexapod robots moving on uneven plum-blossom piles. First, the motion of hexapod robots is formulated as a Markov Decision Process (MDP) with a specified reward function. Second, a transition feasibility model is proposed for hexapod robots, which describes the feasibility of the state transition under the condition of satisfying kinematics and dynamics, and in turn determines the rewards. Third, the footholds and Center-of-Mass (CoM) sequences are sampled from a diagonal Gaussian distribution and the sequences are optimized through learning the optimal policies using the designed DRL algorithm. Both of the simulation and experimental results on physical systems demonstrate the feasibility and efficiency of the proposed method. Videos are shown at https://videoviewpage.wixsite.com/mcrl.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers