02/02/2021

BT Expansion: a Sound and Complete Algorithm for Behavior Planning of Intelligent Robots with Behavior Trees

Zhongxuan Cai, Minglong Li, Wanrong Huang, Wenjing Yang

Keywords:

Abstract: Behavior Trees (BTs) have attracted much attention in the robotics field in recent years, which generalize existing control architectures and bring unique advantages for building robot systems. Automated synthesis of BTs can reduce human workload and build behavior models for complex tasks beyond the ability of human design, but theoretical studies are almost missing in existing methods because it is difficult to conduct formal analysis with the classic BT representations. As a result, they may fail in tasks that are actually solvable. This paper proposes BT expansion, an automated planning approach to building intelligent robot behaviors with BTs, and proves the soundness and completeness through the state-space formulation of BTs. The advantages of blended reactive planning and acting are formally discussed through the region of attraction of BTs, by which robots with BT expansion are robust to any resolvable external disturbances. Experiments with a mobile manipulator and test sets are simulated to validate the effectiveness and efficiency, where the proposed algorithm surpasses the baseline by virtue of its soundness and completeness. To the best of our knowledge, it is the first time to leverage the state-space formulation to synthesize BTs with a complete theoretical basis.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948102
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers