03/05/2021

Plan-Based Relaxed Reward Shaping for Goal-Directed Tasks

Ingmar Schubert, Oz Oguz, Marc Toussaint

Keywords: reinforcement learning, robotics, robotic manipulation, plan-based reward shaping, reward shaping

Abstract: In high-dimensional state spaces, the usefulness of Reinforcement Learning (RL) is limited by the problem of exploration. This issue has been addressed using potential-based reward shaping (PB-RS) previously. In the present work, we introduce Final-Volume-Preserving Reward Shaping (FV-RS). FV-RS relaxes the strict optimality guarantees of PB-RS to a guarantee of preserved long-term behavior. Being less restrictive, FV-RS allows for reward shaping functions that are even better suited for improving the sample efficiency of RL algorithms. In particular, we consider settings in which the agent has access to an approximate plan. Here, we use examples of simulated robotic manipulation tasks to demonstrate that plan-based FV-RS can indeed significantly improve the sample efficiency of RL over plan-based PB-RS.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers