16/11/2020

Learning hierarchical relationships for object-goal navigation

Anwesan Pal, Yiding Qiu, Henrik Christensen

Keywords:

Abstract: Direct search for objects as part of navigation poses a challenge for small items. Utilizing context in the form of object-object relationships enable hierarchical search for targets efficiently. Most of the current approaches tend to directly incorporate sensory input into a reward-based learning approach, without learning about object relationships in the natural environment, and thus generalize poorly across domains. We present Memory-utilized Joint hierarchical Object Learning for Navigation in Indoor Rooms (MJOLNIR), a target-driven navigation algorithm, which considers the inherent relationship between target objects, and the more salient contextual objects occurring in its surrounding. Extensive experiments conducted across multiple environment settings show an 82.9% and 93.5% gain over existing state-of-the-art navigation methods in terms of the success rate (SR), and success weighted by path length (SPL), respectively. We also show that our model learns to converge much faster than other algorithms, without suffering from the well-known overfitting problem. Additional details regarding the supplementary material and code are available at https://sites.google.com/eng.ucsd.edu/mjolnir.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CoRL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers