30/11/2020

COG: COnsistent data auGmentation for object perception

Zewen He, Rui Wu, Dingqian Zhang

Keywords:

Abstract: Recently, data augmentation techniques for training conv-nets emerge one after another, especially focusing on image classification. They're always applied to object detection without further careful design. In this paper we propose COG, a general domain migration scheme for augmentation. Specifically, based on a particular augmentation, we first analyze its inherent inconsistency, and then adopt an adaptive strategy to rectify ground-truths of the augmented input images. Next, deep detection networks are trained on the rectified data to achieve better performance. Our extensive experiments show that our method COG's performance is superior to its competitor on detection and instance segmentation tasks. In addition, the results manifest the robustness of COG when faced with hyper-parameter variations, etc.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_459.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers