26/08/2020

Stochastic Variance-Reduced Algorithms for PCA with Arbitrary Mini-Batch Sizes

Cheolmin Kim, Diego Klabjan

Keywords:

Abstract: We present two stochastic variance-reduced PCA algorithms and their convergence analyses. By deriving explicit forms of step size, epoch length and batch size to ensure the optimal runtime, we show that the proposed algorithms can attain the optimal runtime with any batch sizes. Also, we establish global convergence of the algorithms based on a novel approach, which studies the optimality gap as a ratio of two expectation terms. The framework in our analysis is general and can be used to analyze other stochastic variance-reduced PCA algorithms and improve their analyses. Moreover, we introduce practical implementations of the algorithms which do not require hyper-parameters. The experimental results show that the proposed methodsd outperform other stochastic variance-reduced PCA algorithms regardless of the batch size.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers