09/07/2020

Closure Properties for Private Classification and Online Prediction

Noga Alon, Amos Beimel, Shay Moran, Uri Stemmer

Keywords: Privacy, fairness, Online learning

Abstract: Let H be a class of boolean functions and consider a composed class H' that is derived from H using some arbitrary aggregation rule (for example, H' may be the class of all 3-wise majority-votes of functions in H). We upper bound the Littlestone dimension of H' in terms of that of H. As a corollary, we derive closure properties for online learning and private PAC learning.\n\nThe derived bounds on the Littlestone dimension exhibit an undesirable exponential dependence. For private learning, we prove close to optimal bounds that circumvents this suboptimal dependency. The improved bounds on the sample complexity of private learning are derived algorithmically via transforming a private learner for the original class H to a private learner for the composed class H'. Using the same ideas we show that any (proper or improper) private algorithm that learns a class of functions H in the realizable case (i.e., when the examples are labeled by some function in the class) can be transformed to a private algorithm that learns the class H in the agnostic case.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers