03/05/2021

On InstaHide, Phase Retrieval, and Sparse Matrix Factorization

Sitan Chen, Xiaoxiao Li, Zhao Song, Danyang Zhuo

Keywords: Distributed learning, matrix factorization, phase retrieval, InstaHide

Abstract: In this work, we examine the security of InstaHide, a scheme recently proposed by \cite{hsla20} for preserving the security of private datasets in the context of distributed learning. To generate a synthetic training example to be shared among the distributed learners, InstaHide takes a convex combination of private feature vectors and randomly flips the sign of each entry of the resulting vector with probability 1/2. A salient question is whether this scheme is secure in any provable sense, perhaps under a plausible complexity-theoretic assumption. The answer to this turns out to be quite subtle and closely related to the average-case complexity of a multi-task, missing-data version of the classic problem of phase retrieval that is interesting in its own right. Motivated by this connection, under the standard distributional assumption that the public/private feature vectors are isotropic Gaussian, we design an algorithm that can actually recover a private vector using only the public vectors and a sequence of synthetic vectors generated by InstaHide.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers